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1. INTRODUCTION

It is well-known (cf. [4] p. 108) that due to its unstable nature the Cauchy
problem for elliptic partial differential equations is an improperly posed
problem in the sense of Hadamard. Nevertheless, situations arise in mathe­
matical physics for which it becomes necessary to solve such a problem, in
particular when it is desired to construct an inverse solution to what is
essentially a free boundary problem ([3]). In such cases the differential
equation and prescribed data are often analytic and, hence, permit an
application of the Cauchy-Kowalewski theorem. This approach is not
very satisfactory, however, since what is actually required is a method that
can be adapted for numerical integration. For the case ofquasilinear equations
in two independent variables (x, y), Garabedian has introduced a method
which overcomes this difficulty by using characteristic coordinates to reduce
the differential equation to a canonical system and then solving a one
parameter family of related (stable) hyperbolic Cauchy problems ([3], [4]
p. 623-633). In this paper we present a new method for solving the Cauchy
problem for the case of almost-linear elliptic equations in a manner that is
suitable for numerical computation. This method is based on the use of
conjugate coordinates and reduces the Cauchy problem to finding a fixed
point of a contraction mapping.

II. CONJUGATE COORDINATES AND THE CAUCHY PROBLEM

We seek a solution of the almost linear elliptic partial differential equation
(written in normal form)

U"'''' + Uyy = g(x, y, U, U"', uy )
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which satisfies the Cauchy data

u(x, y) = C/>(x + iy),

ou(x, y) = n( + 0 )

on ~~ x ly ,

x + iy EL,

x + iy E L,

(2)

where L is a given analytic arc, n is the unit outward normal to Land g, C/>,
and Q are assumed to have certain regularity properties to be described
shortly. By the use of a conformal transformation, we can assume
without loss of generality that the arc L is in fact a segment of the x axis
containing the origin (i.e., y = 0 in Eq. (2)). By introducing conjugate
coordinates ([5], [6])

z = x + iy,

z* = x - iy,

Eq. (1) becomes an equation of hyperbolic form:

Uzz* = /(z, z*, U, Uz , Uz*),

where

(
z + z* z - z*)

u --2-'~ = U(z, z*),

and the Cauchy data is transformed into

(3)

(4)

U(z, z*) = C/>(z)

8U(z, z*) _ 8U(z, z*) = _ On( )
8z 8z* l~~ Z

on z = z*,

on z = z*.

(5)

We assume at this point that as a function of its first two arguments,
/(z, z*, ~1 , ~2 '~3) is holomorphic in a bicylinder G x G*, where
G* = {z I Z* E G}, and G is simply connected, and as a function of its last
three variables it is holomorphic in a sufficiently large ball about the origin.
We further assume that G contains the origin and is symmetric with respect
to conjugation, i.e., G = G*, and that C/>(z) and Q(z) are holomorphic for
all z E G. The domain G described above is known as a fundamental domain
([5], [6]).

Now suppose U(z, z*) is a solution of Eq. (4) which is bounded and
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holomorphic in G X G* and define a new function s(z, z*) = Uzz*(z, z*).
It then follows that

Uiz, z*) = r* s(z, g*) dg* + lp(z),
o

Uz*(z, z*) = rs(g, z*) dg + f(z*),
o

(7)

(8)

where lp(z) = Uiz,O) and f(z*) = Uz,(O, z*). Note that s(z, z*) must
satisfy the equation

+ U(O, 0), r* s(z, g*) dg* + lp(z), r s(z, g*) dg + f(z*)] (9)
o 0

and, conversely, if s(z, z*) satisfies (9) then a solution of (4) is given by (6).
The initial conditions (5) become

r rs(g, g*) dg* dg +r lpW dg +r f(e) de + U(O, 0) = <P(z) (10)
o • 0 0 0

or, differentiating in the z plane,

r s(z, g*) de + r s(g, z) dg + lp(z) + f(z) = <P'(z) (11)
o 0

and rs(z, e) dg* + lp(z) - rs(g, z) dg - f(z) = -iD(z). (12)
o 0

Equations (11) and (12) now yield the following expressions for lp(z) and f(z)
in terms of the function s(z, z*):

lp(z) = ![<P'(z) - iD(z)] - r" s(z, g*) de,
• 0

f(z) = ![<P'(z) + iD(z)] - rs(g, z) df
o

(13)

(14)

Hence, we can express the functions lp(z) and f(z) as operators on the
function s(z, z*). In particular, if we define the operators Hi' i = 1,2,3,
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by the right sides of (6), (7), and (8), respectively, where <p(z) and if;(z) are
determined from Eq. (13) and (14) (note that U(O,O) = <P(O», then s(z, z*)
satisfies the equation

s(z, z*) = fez, z*, B1[s(z, z*)], B2[s(z, z*)], B3[s(z, z*)]). (15)

III. THE SOLUTION OF CAUCHY'S PROBLEM

The approach to be used in this section is patterned after the ideas of
[1], and [2] (see also [5] p. 154-164). Consider the class HB(LJp, LJp*) of
functions of two complex variables which are holomorphic and bounded
in LJp X LJp*, where LJp = {z II z I < p}, LJp* = {z I z* E LJp}. If a norm
is defined on HB(LJp, LJp*) by

II s II" = sup{e-"([zl+lz*l> I s(z, z*)I}, (16)

where (z, z*) E LJp x LJp* and'\ > 0 is fixed, HB(LJp, LJp*) becomes a Banach
space which we denote Ap. We shall now show that the operator T defined by

Ts(z, z*) = fez, z*, B1[s(z, z*)], B2[s(z, z*)], B3[s(z, z*)]) (17)

maps a closed ball of the Banach space Ap into itself, and is a contraction
mapping, thus providing a constructive method for obtaining the unique
solution to our Cauchy problem.

By hypothesis, f is holomorphic in a compact subset of the space of five
complex variables and, hence, from Schwarz's lemma for functions of several
complex variables ([5] p. 38, 159), a Lipschitz condition holds there with
respect to the last three arguments, i.e.,

If(z, z*, gl, g2' g3) - fez, z*, glo, g2o, g30) I

~ Co{1 gl - glo I + I g2 - g20 I + I g3 - g30 I}, (18)

where Co is a positive constant. Hence, for Sl , S2 E Ap and p sufficiently small,

From estimates of the form

IJ: s(g, z*) dg I ~ (ZI II s I'" e"I<IHlz*1 I dg I ~ ~ e"/ZI+"lz*1 II s II" , (20)

i.e.,

(21)
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(22)i = 1,2,3,

(where we have assumed s(z, z*) is regular in the polydisc Ap X Ap*, so that
the curvilinear path of integration may be replaced by a straight line-segment)
it can be seen that

II B;S1 - B;S211. ~ ~; II S1 - S2 ii, ,

where the N; are positive constants independent of,\ and ,\ > O. Hence,

(23)

where M is a positive constant independent of '\. Inequality (23) implies that

M M
II Ts II, ~ A II s II, + II To II, < A !I s II, + Mo , (24)

where Mo is a positive constant. Therefore, for II s II, < Mo and ,\ sufficiently
large, II Ts II, < Mo , i.e., T takes a closed ball in Ap into itself. Equation (23)
also implies that, for ,\ sufficiently large,

(25)

i.e., T is a contraction mapping. The existence and uniqueness of a solution
to the equation Ts = sin Ap is now immediate. We have proved the following:

THEOREM 1. Let G be a fundamental domain for the elliptic equation (I)
and let f(z, z*, g1' g2, g3) be holomorphic in G x G* X B(3l, where B(3) is a
sufficiently large ball about the origin. Assume, further, that G = G* and the
functions ep(z) , Q(z) are holomorphic in G. Then, for p sufficiently small,
Eq. (17), (13), (14), and (6) provide a constructive methodfor obtaining a unique
solution ofEq. (1) in I z I ~ p, satisfying the Cauchy data (2).

It is important to note here that the unstable dependence of the solution
of the elliptic equation (1) on the (real) Cauchy data (2) appears exclusively
in the step where this data is extended to complex values of the independent
variable x. When this can be done in an elementary way, for example, by
direct substitution via the transformation (3), no instabilities will occur when
one uses the contraction mapping operator T to obtain approximations to
the desired solution.

For the case where Eq. (I) is linear, Henrici ([5], [6]) has used conjugate
coordinates and the Riemann function to obtain a solution of Cauchy's
problem. Hence, Theorem I can be considered as an extension of Henrici's
results to the case of almost linear elliptic equations.
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